52 research outputs found

    An optimization framework for solving capacitated multi-level lot-sizing problems with backlogging

    Get PDF
    This paper proposes two new mixed integer programming models for capacitated multi-level lot-sizing problems with backlogging, whose linear programming relaxations provide good lower bounds on the optimal solution value. We show that both of these strong formulations yield the same lower bounds. In addition to these theoretical results, we propose a new, effective optimization framework that achieves high quality solutions in reasonable computational time. Computational results show that the proposed optimization framework is superior to other well-known approaches on several important performance dimensions

    Mitigating the Cost of Anarchy in Supply Chain Systems

    Get PDF
    In a decentralized two-stage supply chain where a supplier serves a retailer who, in turn, serves end customers, operations decisions based on local incentives often lead to suboptimal system performance. Operating decisions based on local incentives may in such cases lead to a degree of system disorder or anarchy, wherein one party's decisions put the other party and/or the system at a disadvantage. While models and mechanisms for such problem classes have been considered in the literature, little work to date has considered such problems under nonstationary demands and fixed replenishment order costs. This paper models such two-stage problems as a class of Stackelberg games where the supplier announces a set of time-phased ordering costs to the retailer over a discrete time horizon of finite length, and the retailer then creates an order plan, which then serves as the supplier's demand. We provide metrics for characterizing the degree of efficiency (and anarchy) associated with a solution, and provide a set of easily understood and implemented mechanisms that can increase this efficiency and reduce the negative impacts of anarchic decisions

    Integrated market selection and production planning: complexity and solution approaches

    Get PDF
    Emphasis on effective demand management is becoming increasingly recognized as an important factor in operations performance. Operations models that account for supply costs and constraints as well as a supplier's ability to in°uence demand characteristics can lead to an improved match between supply and demand. This paper presents a new class of optimization models that allow a supplier to select, from a set of potential markets, those markets that provide maximum profit when production/procurement economies of scale exist in the supply process. The resulting optimization problem we study possesses an interesting structure and we show that although the general problem is NP-complete, a number of relevant and practical special cases can be solved in polynomial time. We also provide a computationally very effcient and intuitively attractive heuristic solution procedure that performs extremely well on a large number of test instances

    On the equivalence of strong formulations for capacitated multi-level lot sizing problems with setup times

    Get PDF
    Several mixed integer programming formulations have been proposed for modeling capacitated multi-level lot sizing problems with setup times. These formulations include the so-called facility location formulation, the shortest route formulation, and the inventory and lot sizing formulation with (l,S) inequalities. In this paper, we demonstrate the equivalence of these formulations when the integrality requirement is relaxed for any subset of binary setup decision variables. This equivalence has significant implications for decomposition-based methods since same optimal solution values are obtained no matter which formulation is used. In particular, we discuss the relax-and-fix method, a decomposition-based heuristic used for the efficient solution of hard lot sizing problems. Computational tests allow us to compare the effectiveness of different formulations using benchmark problems. The choice of formulation directly affects the required computational effort, and our results therefore provide guidelines on choosing an effective formulation during the development of heuristic-based solution procedures

    Integrated market selection and production planning: Complexity and solution approaches

    Get PDF
    Emphasis on effective demand management is becoming increasingly recognized as an important factor in operations performance. Operations models that account for supply costs and constraints as well as a supplier's ability to influence demand characteristics can lead to an improved match between supply and demand. This paper presents a class of optimization models that allow a supplier to select, from a set of potential markets, those markets that provide maximum profit when production/procurement economies of scale exist in the supply process. The resulting optimization problem we study possesses an interesting structure and we show that although the general problem is NP -complete, a number of relevant and practical special cases can be solved in polynomial time. We also provide a computationally very efficient and intuitively attractive heuristic solution procedure that performs extremely well on a large number of test instances

    Demand Flexibility in Supply Chain Planning

    No full text

    Operations Planning

    No full text

    Integrated Districting, Fleet Composition, and Inventory Planning for a Multi-Retailer Distribution System

    No full text
    We study an integrated districting, fleet composition, and inventory planning problem for a multi-retailer distribution system. In particular, we analyze the districting decisions for a set of retailers such that the retailers within the same district share truck capacity for their shipment requirements. The number of trucks of each type dedicated to a retailer district and retailer inventory planning decisions are jointly determined in a district formation problem. We provide a mixed-integer-nonlinear programming formulation for this problem and develop a column generation based heuristic approach for its set partitioning formulation. To do so, we first characterize important properties of the optimal fleet composition and inventory planning decisions for a given retailer district. Then, we utilize these properties within a branch-and-price method to solve the integrated districting, fleet composition, and inventory planning problem. A set of numerical studies demonstrates the efficiency of the solution methods discussed for the investigated subproblems. An additional set of numerical studies compares the branch-and-price method to a commercial solver and an evolutionary heuristic method. Further numerical studies illustrate the economic as well as environmental benefits of the integrated modeling approach for various settings

    The risk-averse static stochastic knapsack problem

    No full text
    This paper considers a single-resource allocation problem for multiple items with random, independent resource consumption values, known as the static stochastic knapsack problem (SSKP). Whereas the existing SSKP literature generally assumes a risk-neutral objective using an expected value approach, such an approach can maximize expected profit while admitting the possibility of very high losses in some unfavorable scenarios. Because of this, we consider two popular risk measures, conditional value-at-risk (CVaR) and a mean-standard deviation trade-off, in order to address risk within this problem class. Optimizing the trade-offs associated with these risk measures presents significant modeling and computational challenges. To address these challenges, we first provide mixed-integer linear programming models using a scenario-based approach, which can be exploited to provide exact solutions for discrete distributions. For general distributions, a sample average approximation method provides approximate solutions. We then propose a general mixed integer nonlinear optimization modeling approach for the special case of normally distributed resource requirements. This modeling approach incorporates a new class of normalized penalty functions that account for both the expected costs and risks associated with uncertainty, and it can be specialized to a broad class of risk measures, including CVaR and mean-standard deviation. Our results characterize key optimality properties for the associated continuous relaxation of the proposed general model and provide insights on valuable rank-ordering mechanisms for items with uncertain resource needs under different risk measures. For this broadly applicable case, we present a class of efficient and high-performing asymptotically optimal heuristic methods based on these optimality conditions. An extensive numerical study evaluates the efficiency and quality of the proposed solution methods, identifies optimal item selection strategies, and examines the sensitivity of the solution to varying levels of risk, excess weight penalty values, and knapsack capacity values

    Supplier Wholesale Pricing for a Retail Chain: Implications of Centralized vs. Decentralized Retailing and Procurement under Quantity Competition

    No full text
    We consider pricing decisions for a supplier who sells a product via a retail chain with localized retail stores throughout a region. The retail chain can influence the competition for channel profit between its retail stores and the supplier via its procurement strategy. Retail store orders may be horizontally decentralized or centrally managed by the retail chain, depending on the chain\u27s ordering strategy. In the case of decentralization at the retail stage, the chain may prefer to coordinate procurement from the supplier to achieve better pricing terms. We model this problem as a Stackelberg game between the supplier and the retail chain and its stores, under joint ownership of the retail chain. When the retail stores are horizontally decentralized, they engage in quantity competition in the regional market. Given the supplier\u27s pricing decisions, we analyze the retail chain\u27s procurement strategy and store order quantity decisions. Then, the store order quantities are used to solve the supplier\u27s wholesale price setting problem. These analyses then determine the equilibria of the Stackelberg game between the supplier and the retail chain under the leadership of either party. Our results indicate that the retail chain will have a first mover advantage, while the supplier might in certain cases gain a first mover disadvantage. Furthermore, the profit-maximizing strategy for the channel may in some cases require the supplier\u27s leadership, while in other cases, the retail chain\u27s leadership maximizes channel profit
    corecore